Sunday, March 14, 2010

Harlem Children's Zero Sum Game

I used to work in the marketing side of large corporation (I don't think they'd like me to use their name so let's just say you've heard of it and leave the matter at that). We frequently discussed the dangers of adverse selection: the possibility that a marketing campaign might bring in customers we didn't want, particularly those we couldn't legally refuse. We also spent a lot of time talking about how to maximize the ratio of perceived value to real value.

On a completely unrelated note, here's an interesting article from the New York Times:
Pressed by Charters, Public Schools Try Marketing
By JENNIFER MEDINA

Rafaela Espinal held her first poolside chat last summer, offering cheese, crackers and apple cider to draw people to hear her pitch.

She keeps a handful of brochures in her purse, and also gives a few to her daughter before she leaves for school each morning. She painted signs on the windows of her Chrysler minivan, turning it into a mobile advertisement.

It is all an effort to build awareness for her product, which is not new, but is in need of an image makeover: a public school in Harlem.

As charter schools have grown around the country, both in number and in popularity, public school principals like Ms. Espinal are being forced to compete for bodies or risk having their schools closed. So among their many challenges, some of these principals, who had never given much thought to attracting students, have been spending considerable time toiling over ways to market their schools. They are revamping school logos, encouraging students and teachers to wear T-shirts emblazoned with the new designs. They emphasize their after-school programs as an alternative to the extended days at many charter schools. A few have worked with professional marketing firms to create sophisticated Web sites and blogs.
...

For most schools, the marketing amounts to less than $500, raised by parents and teachers to print up full color postcards or brochures. Typically, principals rely on staff members with a creative bent to draw up whatever they can.

Student recruitment has always been necessary for charter schools, which are privately run but receive public money based on their enrollment, supplemented by whatever private donations they can corral.

The Harlem Success Academy network, run by the former City Council member Eva Moskowitz, is widely regarded, with admiration by some and scorn by others, as having the biggest marketing effort. Their bright orange advertisements pepper the bus stops in the neighborhood, and prospective parents receive full color mailings almost monthly.

Ms. Moskowitz said the extensive outreach was necessary to make sure they were drawing from a broad spectrum of parents. Ms. Moskowitz said they spent roughly $90 per applicant for recruitment. With about 3,600 applicants last year for the four schools in the network, she said, the total amounted to $325,000.

Saturday, March 13, 2010

Social norms and happy employees

I came accross the following from from Jay Golz's New York Times blog:

About 10 years ago I was having my annual holiday party, and my niece had come with her newly minted M.B.A. boyfriend. As he looked around the room, he noted that my employees seemed happy. I told him that I thought they were.

Then, figuring I would take his new degree for a test drive, I asked him how he thought I did that. “I’m sure you treat them well,” he replied.

“That’s half of it,” I said. “Do you know what the other half is?”

He didn’t have the answer, and neither have the many other people that I have told this story. So what is the answer? I fired the unhappy people. People usually laugh at this point. I wish I were kidding.

In my experience, it is generally unhappy employees who say things like "But what happens to our business model if home prices go down?" or "Doesn't that look kinda like an iceberg?" Putting that aside, though, this is another example of the principle discussed in the last post -- it's easy to get the norms you want if you can decide who goes in the group.

Charter schools, social norming and zero-sum games

You've probably heard about the Harlem Children's Zone, an impressive, even inspiring initiative to improve the lives of poor inner-city children through charter schools and community programs. Having taught in Watts and the Mississippi Delta in my pre-statistician days, this is an area of long-standing interest to me and I like a lot of the things I'm hearing about HCZ. What I don't like nearly as much is the reaction I'm seeing to the research study by Will Dobbie and Roland G. Fryer, Jr. of Harvard. Here's Alex Tabarrok at Marginal Revolution with a representative sample, "I don't know why anyone interested in the welfare of children would want to discourage this kind of experimentation."

Maybe I can provide some reasons.

First off, this is an observational study, not a randomized experiment. I think we may be reaching the limits of what analysis of observational data can do in the education debate and, given the importance and complexity of the questions, I don't understand why we aren't employing randomized trials to answer some of these questions once and for all.

More significantly I'm also troubled by the aliasing of data on the Promise Academies and by the fact that the authors draw a conclusion ("HCZ is enormously successful at boosting achievement in math and ELA in elementary school and math in middle school. The impact of being offered admission into the HCZ middle school on ELA achievement is positive, but less dramatic. High-quality schools or community investments coupled with high-quality schools drive these results, but community investments alone cannot.") that the data can't support.

In statistics, aliasing means combining treatments in such a way that you can't tell which treatment or combination of treatments caused the effect you observed. In this case the first treatment is the educational environment of the Promise Academies. The second is something called social norming.

When you isolate a group of students, they will quickly arrive at a consensus of what constitutes normal behavior. It is a complex and somewhat unpredictable process driven by personalities and random connections and any number of outside factors. You can however, exercise a great deal of control over the outcome by restricting the make-up of the group.

If we restricted students via an application process, how would we expect that group to differ from the general population and how would that affect the norms the group would settle on? For starters, all the parents would have taken a direct interest in their children's schooling.

Compared to the general population, the applicants will be much more likely to see working hard, making good grades, not getting into trouble as normal behaviors. The applicants (particularly older applicants) would be more likely to be interested in school and to see academic and professional success as a reasonable possibility because they would have made an active choice to move to a new and more demanding school. Having the older students committed to the program is particularly important because older children play a disproportionate role in the setting of social norms.

Dobbie and Fryer address the question of self-selection, "[R]esults from any lottery sample may lack external validity. The counterfactual we identify is for students who are already interested in charter schools. The effect of being offered admission to HCZ for these students may be different than for other types of students." In other words, they can't conclude from the data how well students would do at the Promise Academies if, for instance, their parents weren't engaged and supportive (a group effective eliminated by the application process).

But there's another question, one with tremendous policy implications, that the paper does not address: how well would the students who were accepted to HCZ have done if they were given the same amount of instruction * as they would have received from HCZ using public school teachers while being isolated from the general population? (There was a control group of lottery losers but there is no evidence that they were kept together as a group.)

Why is this question so important? Because we are thinking about spending an enormous amount of time, effort and money on a major overhaul of the education system when we don't have the data to tell us if what we'll spend will wasted or, worse yet, if we are to some extent playing a zero sum game.

Social norming can work both ways. If you remove all of the students whose parents are willing and able to go through the application process, the norms of acceptable behavior for those left behind will move in an ugly direction and the kids who started out with the greatest disadvantages would be left to bear the burden.

But we can answer these questions and make decisions based on solid, statistically sound data. Educational reform is not like climate change where observational data is our only reasonable option. Randomized trials are an option in most cases; they are not that difficult or expensive.

Until we get good data, how can we expect to make good decisions?

* Correction: There should have been a link here to this post by Andrew Gelman.

Friday, March 12, 2010

Instrumental variables

I always have mixed feelings about instrumental variables (at least insofar as the instrument is not randomization). On one hand they show amazing promise as a way to handle unmeasured confounding. On the other hand, it is difficult to know if the assumptions required for a variable to be an instrument are being met or not.

This is a important dilemma. Alan Brookhart, who introduced them into phamracoepidemiology in 2006, has done an amazing job of proving out one example. But you can't generalize from one example and the general idea of using physician preference as an instrument, while really cool, suffers from these assumptions.

Unlike unmeasured confounders, it's hard to know how to test this. With unmeasured confounders you can ask critics to specify what they suspect might be the key confounding factors and go forth and measure them. But instruments are used precisely when there is a lack of data.

I've done some work in the area with some amazing colleagues and I still think that the idea has some real promise. It's a novel idea that really came out of left field and has enormous potential. But I want to understand it in far more actual cases before I conclude much more . . .

Thursday, March 11, 2010

Propensity Score Calibration

I am on the road giving a guest lecture at UBC today. One of the topics I was going to cover in today's discussion was propensity score calibration (by the ever brilliant Til Sturmer). But I wonder -- if you have a true random subset of the overall population -- why not just use it? Or, if as Til assumes, the sample is too small, why not use multiple imputation? Wouldn't that be an equivalent technique that is more flexible for things like sub group analysis?

Or is it the complexity of the imputation in data sets of the size Til worked with that was the issue? It's certainly a point to ponder.

Worse than we thought -- credit card edition

For a while it looked like the one good thing about the economic downturn was that it was getting people to pay down their credit card debts. Now, according to Felix Salmon, we may have to find another silver lining:

Total credit-card debt outstanding dropped by $93 billion, or almost 10%, over the course of 2009. Is that cause for celebration, and evidence that U.S. households are finally getting their act together when it comes to deleveraging their personal finances? No. A fascinating spreadsheet from CardHub breaks that number down by looking at two variables: time, on the one hand, and charge-offs, on the other.

It turns out that while total debt outstanding dropped by $93 billion, charge-offs added up to $83 billion — which means that only 10% of the decrease in credit card debt — less than $10 billion — was due to people actually paying down their balances.

Tuesday, March 9, 2010

Perils of Convergence

This article ("Building the Better Teacher") in the New York Times Magazine is generating a lot of blog posts about education reform and talk of education reform always makes me deeply nervous. Part of the anxiety comes having spent a number of years behind the podium and having seen the disparity between the claims and the reality of previous reforms. The rest comes from being a statistician and knowing what things like convergence can do to data.

Convergent behavior violates the assumption of independent observations used in most simple analyses, but educational studies commonly, perhaps even routinely ignore the complex ways that social norming can cause the nesting of student performance data.

In other words, educational research is often based of the idea that teenagers do not respond to peer pressure.

Since most teenagers are looking for someone else to take the lead, social norming can be extremely sensitive to small changes in initial conditions, particularly in the make-up of the group. This makes it easy for administrators to play favorites -- when a disruptive or under-performing student is reassigned from a favored to an unfavored teacher, the student lowers the average of the second class and often resets the standards of normal behavior for his or her peers.

If we were to adopt the proposed Jack-Welch model (big financial incentitves at the top; pink slips at the bottom), an administrator could, just by moving three or four students, arrange for one teacher to be put in line for for achievement bonuses while another teacher of equal ability would be in danger of dismissal.

Worse yet, social norming can greatly magnify the bias caused by self-selection and self-selection biases are rampant in educational research. Any kind of application process automatically removes almost all of the students that either don't want to go to school or aren't interested in academic achievement or know that their parents won't care what they do.

If you can get a class consisting entirely of ambitious, engaged students with supportive parents, social norming is your best friend. These classes are almost (but not quite) idiot proof and teachers lucky enough to have these classes will see their metrics go through the roof (and their stress levels plummet -- those are fun classes to teach). If you can get an entire school filled with these students, the effect will be even stronger.

This effect is often stated in terms of the difference in performance between the charter schools and the schools the charter students were drawn from which adds another level of bias (not to mention insult to injury).

Ethically, this raises a number of tough questions about our obligations to all students (even the difficult and at-risk) and what kind of sacrifices we can reasonably ask most students to make for a few of their peers.

Statistically, though, the situation is remarkably clear: if this effect is present in a study and is not accounted for, the results are at best questionable and at worst meaningless.

(this is the first in a series of posts about education. Later this week, I'll take a look at the errors in the influential paper on Harlem's Promise Academy.)

Efficacy versus effectiveness

One of the better examples that I have found of this distinction is with physical activity. Travis Saunders talks about the difference between a closely monitored exercise program and encouraging exercise related behavior (despite randomization).

This should be a warning for those of us in drug research as well; not even randomization will help if you have a lot of cross-overs over time or if user tend to alter other behaviors as a result of therapy. This isn't very plausible with some drugs with few side effects (statins) but could be really important for others where the effects can alter behavior (NSAIDs). In particular, it makes me wonder about our actual ability to use randomized experiments of pain medication for arthritis (except, possibly, in the context of comparative effectiveness).

But it is worth thinking about when trying to interpret observational data. What else could you be missing?

Monday, March 8, 2010

Undead papers

Okay, so what do y'all do when a paper becomes undead? We all have work that stopped, for one reason or another, but really needs to be brought to a conclusion. Not even necessarily a happy conclusion (sometimes putting a project out of its misery is the kindest decision for all involved -- especially the junior scientist leading the charge). But sometimes it is the case that the results are just not that compelling (but it still deserves to be published in the journal of minor findings).

But I wonder what is the secret to motivation under these conditions?

Sunday, March 7, 2010

"Algebra in Wonderland" -- recommended with reservations

In today's New York Times, Melanie Bayley, a doctoral candidate in English literature at Oxford, argues that Lewis Carroll's Alice in Wonderland can be interpreted as a satire of mathematics in the mid-Nineteenth Century, particularly the work of Hamilton and De Morgan.

The essay has its share of flaws: none of the analogies are slam-dunk convincing (the claim that the Queen of Hearts represents an irrational number is especially weak); the omission of pertinent works like "A Tangled Tale" and "What the Tortoise Said to Achilles" is a bit strange; and the conclusion that without math, Alice might have been more like Sylvie and Bruno would be easier to take seriously if the latter book hadn't contained significant amounts of mathematics* and intellectual satire.

Those problems aside, it's an interesting piece, a great starting point for discussing mathematics and literature and it will give you an excuse to dig out your Martin Gardner books. Besides, how often do you get to see the word 'quaternion' on the op-ed page?


* including Carroll's ingenious gravity powered train.

Friday, March 5, 2010

When is zero a good approximation

I was commenting on Andrew Gelman's blog when a nice commentator pointed something out that I usually don't think much about: pharmacoepidemiology outcomes include both cost and efficacy.

Now, a lot of my work has been on older drugs (aspirin, warfarin, beta blockers are my three most commonly studied drugs) so I have tended to assume that cost was essentially zero. A years supply of aspirin for $10.00 is an attainable goal and so I have assumed that we can neglect the cost of therapy.

But does that make sense if we are talking a targeted chemotherapy? In such a case, we might have to weight not just the burden of additional adverse events but the cost of the medication itself.

It's becoming appalling clear to me that I don't have a good intuition of how to model this well. Making everything a cost and assuming a price on years of life lost is one approach but the complexity of pricing involved (and the tendency for relative costs to change over time) worried me about external validity.

I know what I will be thinking about this weekend!

Thursday, March 4, 2010

How are genetically engineered crops like AAA rated structured bonds?

Felix Salmon draws a clever analogy:

If you only grow one crop, the downside of losing it all to an outbreak is catastrophe. In rural Iowa it might mean financial ruin; in Niger, it could mean starvation.

Big agriculture companies like DuPont and Archer Daniels Midland (ADM), of course, have an answer to this problem: genetically engineered crops that are resistant to disease. But that answer is the agricultural equivalent of creating triple-A-rated mortgage bonds, fabricated precisely to prevent the problem of credit risk. It doesn’t make the problem go away: It just makes the problem rarer and much more dangerous when it does occur because no one is — or even can be — prepared for such a high-impact, low-probability event.

Valuing Pain

Readers of this blog will know that I have some concerns about the regulation of pain medications. The FDA continues to warn about the issue of liver injury when taking acetaminophen.

For a moment, let's ignore the case of people taking the drug inappropriately or for whom another medication would provide better symptom control. They exist and are relevant to policy discussions, but they distract from today's main thought.

We can measure liver damage and death (hard outcomes). We cannot easily measure pain -- what level of pain relief is worth a 1% chance of death?

So do we leave it up to individual judgment? Drugs can be confusing and acetaminophen (due to efficacy) is included in a lot of preparations (for important reasons). So what is the ideal balance between these two goals (prevent adverse events and relieving pain)?

It would be so much easier if pain were easy to measure . . .

Wednesday, March 3, 2010

p-values

Another nice critique of relying on p-values. There is also a fine example in the comments of why one should double check when they think things look odd. Often it is better to keep one's mouth shut and be thought a fool than to open it and remove all doubt.

Tuesday, March 2, 2010

Comparing Apples and Really Bad Toupees

DISCLAIMER: Though I have worked in some related areas like product launches, I have never done an analysis of brand value. What follows are a few thoughts about branding without any claim of special expertise or insight. If I've gotten something wrong here I would appreciate any notes or corrections.

Joseph's post reminded me of this article in the Wall Street Journal about the dispute between Donald Trump and Carl Icahn over the value of the Trump brand. Trump, not surprisingly, favors the high end:
In court Thursday, Mr. Trump boasted that his brand was recently valued by an outside appraiser at $3 billion.

In an interview Wednesday, Mr. Trump dismissed the idea that financial troubles had tarnished his casino brand. He also dismissed Mr. Icahn's claims that the Trump gaming brand was damaged, pointing to a recent filing in which Mr. Icahn made clear that he wants to assume the license to the brand. "Every building in Atlantic City is in trouble. OK? This isn't unique to Trump," he said. "Everybody wants the brand, including Carl. It's the hottest brand in the country."
While Icahn's estimate is a bit lower:
Mr. Icahn, however, believes his group also would have the right to use the Trump name under an existing licensing deal, but says the success of the casinos don't hinge on that. The main disadvantage to losing the name, he says, would be the $15 million to $20 million cost of changing the casinos' signs.
So we can probably put the value of the Trump brand somewhere in the following range:

-15,000,000 < TRUMP < 3,000,000,000

(the second inequality should be less than or equal to -- not sure how to do it on this text editor)

Neither party here is what you'd call trustworthy and both are clearly pulling the numbers they want out of appropriate places but they are able to make these claims with straight faces partly because of the nature of the problem.

Assigning a value to a brand can be a tricky thing. Let's reduce this to pretty much the simplest possible case and talk about the price differential between your product and a similar house brand. If you make Clorox, we're in pretty good shape. There may be some subtle difference in the quality between your product and, say, the Target store brand but it's probably safe to ignore it and ascribe the extra dollar consumers pay for your product to the effect.

But what about a product like Apple Computers? There's clearly a brand effect at work but in order to measure the price differential we have to decide what products to compare them to. If we simply look at specs the brand effect is huge but Apple users would be quick to argue that they were also paying for high quality, stylish design and friendly interfaces. People certainly pay more for Macs, Ipods, Iphones, and the rest, but how much of that extra money is for features and how much is for brand?

(full disclosure: I use a PC with a dual Vista/Ubuntu operating system. I do my programming [Python, Octave] and analysis [R] in Ubuntu and keep Vista for compatibility issues. I'm very happy with my system. If an Apple user would like equal time we'd be glad to oblige)

I suspect that more products are closer to the Apple end of this spectrum than the Clorox end but even with things like bleach, all we have is a snapshot of a single product. To useful we need to estimate the long term value of the brand. Is it a Zima (assuming Zima was briefly a valuable brand) or is it a Kellogg's Corn Flakes? And we would generally want a brand that could include multiple brands. How do we measure the impact of a brand on products we haven't launched yet? (This last point is particularly relevant for Apple.)

The short answer is you take smart people, give them some precedents and some guidelines then let them make lots of educated guesses and hope they aren't gaming the system to tell you what you want to hear.

It is an extraordinarily easy system to game even with guidelines. In the case of Trump's casinos we have three resorts, each with its own brand that interacts in an unknown and unknowable way with the Trump brand. If you removed Trump's name from these buildings, how would it affect the number of people who visit or the amount they spend?

If we were talking about Holiday Inn or even Harrah's, we could do a pretty good job estimating the effect of changing the name over the door. We would still have to make some assumptions but we would have data to back them up. With Trump, all we would have is assumption-based assumptions. If you take these assumptions about the economy, trends in gambling and luxury spending, the role of Trump's brand and where it's headed, and you give each one of them a small, reasonable, completely defensible nudge in the right direction, it is easy to change your estimates by one or two orders of magnitude.

We also have an unusual, possibly even unique, range of data problem. Many companies have tried to build a brand on a public persona, sometimes quite successfully. Normally a sharp business analyst would be in a good position to estimate the value of one of these brands and answer questions like "if Wayne Gretsky were to remove his name from this winter resort, what impact would it have?"

The trouble with Trump is that almost no one likes him, at least according to his Q score. Most persona-based brands are built upon people who were at some point well-liked and Q score is one of the standard metrics analysts use when looking at those brands. Until we get some start-ups involving John Edwards and Tiger Woods, Mr. Trump may well be outside of the range of our data.