Wednesday, April 22, 2015

"Clutching at straws: the illusion of existing technology" -- more Mars One

Still working on a Mars One article and passing off my notes as blog posts.

From Failure to launch: the technical, ethical, and legal case against Mars One
by Michael Listner and Christopher Newman
Although the ethical and legal challenges facing Mars One are considerable, this venture will ultimately rise or fall on the technical and engineering elements. The stated aim of Mars One, according to their website, is to use “existing technologies available from proven suppliers.”1 This statement provides the first crucial difficulty. At each crucial phase of the mission—travel to Mars, landing, and establishing a permanent colony—the claim that of utilizing existing technology is unsustainable.

For example, at present the only existing operational human spaceflight vehicle is the Russian Soyuz capsule. Mars One states that the existing technology that will be used to traverse millions of kilometers from the Earth to Mars will instead be a variant of SpaceX’s Dragon capsule. To call the considerable research and development that this would require as “existing technology” is, at best, grossly oversimplifying the issue.

The Mars One project also provides no detail in respect of the development of reliable and effective life support systems and the problematic subject of dealing with human waste disposal. These are issues that will ultimately need to be solved for a successful mission to Mars, and there is significant research and development activity ongoing in this area.2 Such technology is, however, by no means “existing” without a significant amount of investment in research and development.

The picture is very much the same when considering the critical issue of landing the Mars One colonists on the Martian surface. Considered one of the most problematic aspects of human exploration, it is this aspect of the Mars One project where the notion of using existing technology is exposed as being dangerously misleading. The existing technology that has landed rovers on Mars is inadequate for landing humans.3 The Martian atmosphere poses considerable and serious challenges for landing a heavy payload onto the surface. The atmosphere varies considerably, making it extremely difficult to scale up existing technology used to land small rovers. Supersonic retropropulsion, which at present seems the most promising method of overcoming the obstacles posed by the variable Martian atmosphere, still requires expensive research and development.4 Again, this is not a problem unique to the Mars One project. It is, however, a fundamental obstacle to a 2023 mission with a projected budget of $6 billion.

Assuming, however, that the Mars One crew successfully makes it to the Martian surface, one aspect of space technology that remains untested, and makes the Mars One project fundamentally different from any previous space activity, is the technology required for the permanent settlement of Mars. Much has been made of in situ resource utilization (ISRU) technologies that will enable the colonists to live off the land. The much-publicized MIT feasibility study of Mars One casts significant doubt on the readiness of this technology, none of which has been deployed in practice.5 When challenged on this, the Mars One team responded by maintaining that the MIT study was based on ISS operations and therefore the study does not provide a valid comparison.6

Such assertions are, however, inconsistent with the stated aim of using existing technology. Either Mars One will utilize existing technology that has been tested in space on the ISS (in which case the MIT study is valid), or they will be looking to extrapolate new, untested methods of ISRU, which raises questions of reliability and cost in terms of money and time. In any event, the MIT study did not consider issues such as establishing a reliable power system and communications network, as well as the costly issue of spacesuit and habitat development. All these issues raise further questions about the technical feasibility of the entire venture.


2 comments:

  1. I've been enjoying your posts (or notes or however you're scoring them) on the Mars One debacle and am looking forward to the article.

    It has seemed to me for a while that when many people say "existing technology" with respect to the space program they really mean something closer to "we don't need to invent new physics to make this work."

    Moore's law has held up for a long time, and some aspects of biotech have seen similarly amazing gains in the last few decades. A lot of people really seem to assume this is the natural model for technology: if you can do something with great effort now it will be trivial in a few years, and if that doesn't happen it is a sign of incompetence or lack of commitment.

    ReplyDelete
    Replies
    1. I've noticed the "new physics" standard as well. This is particularly noticeable when we get to the landers (which is the topic of the next post).

      Delete